HELP – train SAEHD or AMP error

Home Forums DeepFaceLab Errors HELP – train SAEHD or AMP error

Viewing 1 post (of 1 total)
  • Author
    Posts
  • #8354
    giu3232
    Participant

      Hi guys,

      I’m very new to deepfake. I’m using DeepFaceLab_NVIDIA_RTX3000_series_build_11_20_2021. I managed to gather around 4200 pictures of the guy I d like to deepfake, I have all the heads aligned properly, guides were checked one by one and are ok, and I trained the masks using Xseg ( created around 200 manually).

      When I use Quick96 it works, but when I try with SAEH or AMP I get the same error.

      Here is when the console tells me:

      Running trainer.

      [new] No saved models found. Enter a name of a new model : WAYNE_KNIGHT_SAEHD
      WAYNE_KNIGHT_SAEHD

      Model first run.

      Choose one or several GPU idxs (separated by comma).

      [CPU] : CPU
      [0] : NVIDIA GeForce RTX 4090

      [0] Which GPU indexes to choose? : 0
      0

      [16] Autobackup every N hour ( 0..24 ?:help ) : 1
      1
      [y] Write preview history ( y/n ?:help ) :
      y
      [n] Choose image for the preview history ( y/n ) :
      n
      [1000000] Target iteration : 0
      0
      [n] Flip SRC faces randomly ( y/n ?:help ) :
      n
      [n] Flip DST faces randomly ( y/n ?:help ) :
      n
      [8] Batch_size ( ?:help ) : 12
      12
      [512] Resolution ( 64-640 ?:help ) : 2048
      2048
      [head] Face type ( h/mf/f/wf/head ?:help ) :
      head
      [liae-ud] AE architecture ( ?:help ) : df-ud
      df-ud
      [512] AutoEncoder dimensions ( 32-1024 ?:help ) : 2048
      2048
      [64] Encoder dimensions ( 16-256 ?:help ) : 256
      256
      [64] Decoder dimensions ( 16-256 ?:help ) : 256
      256
      [22] Decoder mask dimensions ( 16-256 ?:help ) : 256
      256
      [n] Masked training ( y/n ?:help ) : y
      [y] Eyes and mouth priority ( y/n ?:help ) :
      y
      [y] Uniform yaw distribution of samples ( y/n ?:help ) : n
      [y] Blur out mask ( y/n ?:help ) :
      y
      [y] Place models and optimizer on GPU ( y/n ?:help ) :
      y
      [y] Use AdaBelief optimizer? ( y/n ?:help ) :
      y
      [y] Use learning rate dropout ( n/y/cpu ?:help ) :
      y
      [y] Enable random warp of samples ( y/n ?:help ) :
      y
      [0.0] Random hue/saturation/light intensity ( 0.0 .. 0.3 ?:help ) : 0.05
      0.05
      [0.0] GAN power ( 0.0 .. 5.0 ?:help ) : 0.01
      0.01
      [64] GAN patch size ( 3-640 ?:help ) : 512
      512
      [16] GAN dimensions ( 4-512 ?:help ) :
      16
      [0.0] ‘True face’ power. ( 0.0000 .. 1.0 ?:help ) : 0.01
      0.01
      [0.0] Face style power ( 0.0..100.0 ?:help ) : 0
      0.0
      [0.0] Background style power ( 0.0..100.0 ?:help ) : 0
      0.0
      [none] Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) : rct
      rct
      [n] Enable gradient clipping ( y/n ?:help ) : y
      [n] Enable pretraining mode ( y/n ?:help ) :
      n
      Error: Dimension 0 in both shapes must be equal, but are 5 and 6. Shapes are [5,5] and [6,6]. for ‘{{node concat_4}} = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32](LeakyRelu_81, LeakyRelu_84, concat_4/axis)’ with input shapes: [?,512,5,5], [?,512,6,6], [] and with computed input tensors: input[2] = <1>.
      Traceback (most recent call last):
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py”, line 1880, in _create_c_op
      c_op = pywrap_tf_session.TF_FinishOperation(op_desc)
      tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 0 in both shapes must be equal, but are 5 and 6. Shapes are [5,5] and [6,6]. for ‘{{node concat_4}} = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32](LeakyRelu_81, LeakyRelu_84, concat_4/axis)’ with input shapes: [?,512,5,5], [?,512,6,6], [] and with computed input tensors: input[2] = <1>.

      During handling of the above exception, another exception occurred:

      Traceback (most recent call last):
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py”, line 58, in trainerThread
      debug=debug)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py”, line 193, in __init__
      self.on_initialize()
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py”, line 518, in on_initialize
      gpu_pred_src_src_d2 = self.D_src(gpu_pred_src_src_masked_opt)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py”, line 117, in __call__
      return self.forward(*args, **kwargs)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\PatchDiscriminator.py”, line 184, in forward
      x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py”, line 206, in wrapper
      return target(*args, **kwargs)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\array_ops.py”, line 1769, in concat
      return gen_array_ops.concat_v2(values=values, axis=axis, name=name)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_array_ops.py”, line 1227, in concat_v2
      “ConcatV2”, values=values, axis=axis, name=name)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py”, line 750, in _apply_op_helper
      attrs=attr_protos, op_def=op_def)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py”, line 3569, in _create_op_internal
      op_def=op_def)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py”, line 2042, in __init__
      control_input_ops, op_def)
      File “T:\DEEPFAKE\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py”, line 1883, in _create_c_op
      raise ValueError(str(e))
      ValueError: Dimension 0 in both shapes must be equal, but are 5 and 6. Shapes are [5,5] and [6,6]. for ‘{{node concat_4}} = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32](LeakyRelu_81, LeakyRelu_84, concat_4/axis)’ with input shapes: [?,512,5,5], [?,512,6,6], [] and with computed input tensors: input[2] = <1>.

      Any chance someone here knows where are the wrong parameters? I tried to let all the default value too and still get the same error. I tried to change tons of parameters, going down on resolution, going from df to liae … I tried the rtx3000 serie and dx12 version of the software, nothing works.

      export AMP and SAEHD as dfm both return an error about a 2gig limit too.

      Thanks a lot for your help.

    Viewing 1 post (of 1 total)
    • You must be logged in to reply to this topic.